skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dunn, Carmen_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Controlling the self‐assembly behaviors of block copolymers (BCPs) is a focal point of many research thrusts due to their broad use in various applications. While BCP molecular weight, volume fraction, and chemical identities are key thermodynamic parameters to determine their morphology, an emergent method in this area is through reaction‐induced changes to the characteristics of a BCPin situ, which provides access to multiple morphologies and domain sizes from a single parent polymer, as well as enabling the formation of metastable morphologies which may be difficult to attain otherwise. This work provides a focused review about the current state of reaction‐induced morphology control in BCPs in both solution and solid states. Furthermore, we provide a forward‐looking perspective on the future opportunities of understanding and employing reaction engineering to manipulate and advance BCP self‐assembly. © 2023 Society of Industrial Chemistry. 
    more » « less